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Abstract. Pervasive transport applications will benefit from sharing
underlying communication infrastructure and using data that are owned
by different parties. In the past we have suggested using deontic logic
and the Event Calculus to control access to information in distributed
transport applications. Here we argue that monitoring compliance with
policy entails separating two types of state, namely, a subset of the ap-
plication state and the inferred explicit assertions of the apparent state
of compliance. The tight coupling of such assertions to the clauses of
the natural language policy documents that form the agreements be-
tween organisations mean that the organisations agree on the assertions’
meanings. This approach (i) reduces what must be maintained, avoiding
state explosion; (ii) provides unambiguous points of interaction between
organisations—the assertions of apparent compliance; and (iii) allows or-
ganisations to use whatever mechanisms they prefer to infer compliance
but hides these internals behind the unambiguous assertions. We have a
prototype implementation of these ideas as part of middleware designed
to share transport information.

1 Introduction

Transport applications provide services to users based on data from a variety of
sources. For example, the local bus company may note periodically the locations
of its buses to assist with route changes and capacity planning, taxi companies
use the location of each of their vehicles to aid in dispatch, and pollution levels
may be recorded by the appropriate part of local government to influence plan-
ning decisions. Data typically have owners and non-trivial applications will use
the widest range of data possible, meaning that they must process information
from multiple owners. Such applications are impossible to build if organisations
manage data entirely within isolated, vertical silos.

To encourage contribution of transport data, owners must be confident that
the data will not be misused. We believe that software can help and that monitor-
ing compliance with data use agreements should be a function of the middleware
used to build applications. Making applications responsible will lead to a range
of incompatible approaches. Our work in this area is focused on a project to
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construct middleware allowing transport data to be collected by many different
organisations, having disparate responsibilities and loyalties, and using the data
to develop useful applications [1]. We have advocated deontic logic—a modal
logic that focuses on representations of obligation and prohibition—and its ex-
pression in the Event Calculus as the basis for data use rules and the monitoring
of subsequent compliance [2].

The key contributions of this paper include the observation that one must
maintain information about the current state of affairs in terms of application
semantics and, as a form of indirection, use this to infer the current degree of
compliance. These are separate types of state and lead to two types of fluents
in the Event Calculus sense. We illustrate that this division is effective using an
example scenario.

This paper is organised as follows. Section 2 provides background, including
an overview of our middleware’s architecture. Section 3 describes our approach,
including the responsibilities of the deontic manager component and the types
of state required to monitor compliance. Section 4 illustrates an example deploy-
ment and section 5 provides concluding remarks and outlines future work.

2 Background

Many systems have to track compliance against service level agreements, and
frequently this has been in the context of workflow systems (for an overview of
workflow standards see Schmidt [3]). In terms of policy specification, research
has been done on the representation of deontic state using Petri Nets [4–6] and
Finite State Machines [5]. In these approaches, application state is the state of
compliance. This leads inevitably to a combinatorial state explosion.

We use the Event Calculus (more specifically the Simplified Event Calculus)
to reason about changes in the states of affairs [7]. A summary is included in
our previous work [2], along with a comparison between our approach and those
mentioned above. Contract representation with the Event Calculus is itself not
a new idea. It has been used, for example, to reason about the kinds of contract
that a composite software service may accept [8], but it is unclear that these
schemes are effective at reducing the size of the state space.

It is worth defining some terminology. The basic entity is the component. A
component is responsible for performing a set of functions that should be related.
Components communicate by exchanging messages that emanate from and are
received by endpoints; each endpoint is plugged into one or more other endpoints.
Each endpoint specifies the schema of the messages that it will emit and accept.
The middleware enforces matching of sender and receiver schemas, ensuring that
only compatible endpoints are connected. Multiple components may be under
the control of a single entity. Such an entity is named an organisation and is
our unit of data ownership. Monitoring the message flow between components
is sufficient to keep track of organisations’ compliance with policy.
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3 Monitoring Compliance: State and the Deontic
Manager

A contract defines states of compliance, specifies happenings that can affect
these, and describes actions that should be taken as a consequence. We represent
compliance by fluents in an Event Calculus rendition of the contract and monitor
it using a special proxy component called the deontic manager. One is placed
in each organisation and is interposed between all inter-organisation endpoint
connections.

The deontic manager examines for each message it receives (i) the type of
message in question (which is given by the message’s schema) and how such
messages are classified in the encoded contract between the organisations, (ii)
the classes of the sending and receiving endpoints, and (iii) the classes of the
sending and receiving components’ enclosing organisations. Classes are expressed
as part of the encoded contract following the pattern described in our previous
work [2]. The deontic manager then activates and terminates fluents that rep-
resent the application-specific state of the system. This state in turn is used to
estimate the current degree of compliance, again by activating and terminat-
ing fluents—“deontic” fluents—derived from the contract. Once this is done, the
deontic manager forwards the message to its intended recipient or discards it.
Notification messages corresponding to deontic fluents may be transmitted by
the deontic manager itself.

This straightforward split between application-specific and deontic fluents
allows the latter to be unambiguous “hooks” for monitoring compliance. The
owners of the data necessarily reach consensus on their rights and responsi-
bilities as codified in the agreements that they sign. Since deontic fluents are
coupled tightly with these agreements, the meanings of such fluents are con-
sistent between the organisations involved. Once these have been defined, each
party is free to trigger them using any means that suits the local environment.
The application-specific fluents are defined so that they do just that.

4 Example

In this section we describe an example, which we have implemented, where this
scheme is used. The main organisations involved are the local bus operator, a
local taxi company, and ourselves. The bus operator has agreed to provide us,
using the shared middleware, with streams of data that indicate the locations of
their buses. They have given permission for us to interpret these data in order
to provide a public service that helps people know when they need to reach their
local bus stops in order to catch the next bus. Although this service is available
to the public, the bus position data that it uses are not. In fact, these data
are confidential: they provide a large amount of information considered to be
commercially sensitive to bus operations and so our example centres on the bus
operator determining whether or not they consider a breach to have occurred.
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The middleware also carries data about the locations of taxis. The taxi com-
pany provides a service, via the middleware, allowing one to determine the dis-
tance from a given spot to the nearest taxi. This is useful to their potential
customers as it allows estimation of waiting times. It is important to realise that
the bus company also has access to this service.

In our hypothetical scenario, we suppose that the bus operator decides to
evaluate the efficacy of adding more bus routes. They estimate the coverage of
the city of buses and taxis in part by finding the proximity of taxis to their buses.
To their surprise, it appears that taxis are almost invariably trailing a short
distance behind each of their buses. Staff presume that there is a commercial
interest in taxis doing this: potential bus passengers who realise that they have
just missed a bus will be more likely to jump into a taxi than wait for the next
bus. The bus company suspects that the taxi operator has been able to discover,
using the shared middleware, information about the positions of their buses. The
spotlight falls on us: regardless of whether it is intentional, information may be
leaking beyond that produced by our bus stop arrival application.

Here the fluents needed to represent application-specific state include bus
location and taxi location, parametrised with an identifier and the location
of the bus or taxi, respectively. These may be combined to yield the application-
specific fluent taxi near bus. While this fluent does not have any inherent
deontic interpretation, in the context of this scenario it can be used to infer the
suspicion of a violation. This state of compliance can be reflected by the deontic
fluent violation suspected. This fluent might elicit a severe automated re-
sponse, e.g., the bus company could terminate deontic fluents that need to hold
for data interactions, thereby halting our feed of bus position data and breaking
our bus-stop notification application.

The indirection from application-specific to deontic fluents allows the bus
company to monitor, using private rules internal to them, the correlation between
positions of taxis and their own buses. They must agree with us on the meaning
of the violation suspected fluent but can keep the details of the others,
including the evidence that is used to trigger them, private. Disclosure will be
necessary only to the extent that conflict resolution requires it. Throughout the
period of conflict between the bus company and us, however, the underlying
infrastructure continues to function, allowing data to travel between the bus
company and other, independent subscribers.

5 Conclusions and Future Work

We have described, as part of using deontic logic expressed in the Event Calculus
to represent data use contracts, how application-specific state must be monitored
and used to infer the degree of compliance—the deontic state. This means that
while two types of state must be maintained, combinatorial state explosion can
be avoided because the scope of relevant application-specific state is limited. We
have illustrated this using an example of automatic monitoring that binds the
two to yield suspicion of contract violation.
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Our plans for the future include the following. At the moment, our design
relies on examining every message, using its classification to effect state changes
and determine whether delivery should be allowed. We intend to conduct a study
of the impact of this process on performance, using, for example, the methodol-
ogy applied to Houdini as a guide [9]. While we expect that on modern hardware
the negative effects may be small considering the improvement in compliance
monitoring that results, for data streams that involve a rapid succession of mes-
sages the overhead of checking each one may be problematic. We also intend
to examine sampling messages with the goal of checking a representative subset
for contractual compliance. Taken to the extreme, compliance is only checked
when endpoints are connected. At the moment it is unclear how to design the
sampling strategy so as to form an accurate picture of the interactions taking
place and how to reason about resulting probabilistic compliance.

We can extend our scheme to maintain data provenance if deontic managers
record the information that they use to guide state changes. Stored and queried
properly, this can form the basis for not only data pedigree but for reasoning
about a datum’s history of compliance (derived by placing the datum within the
context of the contracts that were in place at the time of its transmission). We
intend to determine how this may best be done.
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